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Abstract. We propose a permutation-based explanation method for im-
age classifiers. Current image-model explanations like activation maps
are limited to instance-based explanations in the pixel space, making it
difficult to understand global model behavior. In contrast, permutation
based explanations for tabular data classifiers measure feature impor-
tance by comparing model performance on data before and after permut-
ing a feature. We propose an explanation method for image-based mod-
els that permutes interpretable concepts across dataset images. Given a
dataset of images labeled with specific concepts like captions, we permute
a concept across examples in the text space and then generate images via
a text-conditioned diffusion model. Feature importance is then reflected
by the change in model performance relative to unpermuted data. When
applied to a set of concepts, the method generates a ranking of feature
importance. We show this approach recovers underlying model feature
importance on synthetic and real-world image classification tasks.

Keywords: permutation importance · explainable AI · diffusion models

1 Introduction

Understanding AI model predictions is often important for safe deployment.
However, explanation methods for image-based models are instance-based and
rely on heatmaps or masks in the pixel space [21,28,32,42], and recent work has
called into question their utility [1,2,13]. We hypothesize that these methods fall
short in part because they are in the pixel space rather than in the concept space
(e.g., presence of an object), leading to an increase in the cognitive load placed
on a user. Furthermore, while useful for model debugging, it is often intractable
to look at instance-based explanations for every single image in a large test set.

We propose an approach for explaining image-based models that uses per-
mutation importance to produce dataset-level explanations in the concept space.
In contrast to instance-based explanations, our method generates a ranking of
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Fig. 1: Text-conditioned diffusion enables permutation importance for images. Given
images captioned with concepts, we permute concepts across captions. Then, we gen-
erate images via text-conditioned diffusion models and measure classifier performance
relative to unpermuted data. If performance drops, the model relies on the concept.

feature importance by measuring the drop in model performance when one per-
mutes each concept across all instances in the test set. While widely used with
tabular data [4, 5, 33], it is unclear how permutation importance applies to im-
ages. For example, given a scene classifier, if we want to know to what extent
it relies on a concept like the presence of a chair, one cannot simply shuffle the
pixels of chairs across images in the dataset.

In light of these challenges, we present DEPICT, an approach that uses dif-
fusion models to enable permutation importance on image classifiers. Our main
insight is that while it is difficult to permute concepts in the pixel space, we can
permute concepts in the text space (Fig. 1). For example, we can simply shuffle
the presence of a chair in the captions of images. Then, using a text-conditioned
diffusion model, we bridge from text (captions) to pixel space (image), allow-
ing us to permute concepts across images. With the generated permuted and
unpermuted test set, we can apply permutation importance as usual.

Given a target model, an image test set captioned with a set of concepts, and
a text-conditioned diffusion model, we show that DEPICT can generate concept-
based model explanations that would otherwise be intractable via local instance-
based explanations. Through experiments on synthetic and real image data, we
show that our approach can more accurately capture the feature importance of
classifiers over commonly used instance-based explanation approaches.

2 Related Works

We introduce DEPICT, a diffusion-enabled permutation importance approach
to understand image-based classifiers. DEPICT lies at the intersection of ex-
plainable AI, generative models, and human-computer interaction.
Explainable AI. Explainable AI allows us to understand model behavior [35].
Global explanations allow us to do so as a whole. E.g., linear models that oper-
ate directly on the input space are explainable via their weights, which reflect
the importance of each input feature with respect to the model’s output [34].
The usefulness of these explanations depends in part on the interpretability of
the input space. If the input space is just pixels, such explanations are unlikely
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Fig. 2: Approach overview. In tabular permutation importance (left), one obtains
feature importance by permuting each feature column and measuring the impact on
model performance. In diffusion-enabled image permutation importance (right), fea-
tures are permuted in the diffusion model’s conditioned text space and generate dataset
images for classifier evaluation. To validate results, one can check that the model can
accurately classify generated images, and only the permuted concept changed.

to be useful. More complex models like deep neural networks require extrinsic
explanation techniques. For tabular data, the input space corresponds to inter-
pretable concepts, and dataset-specific feature importance can be calculated with
permutation importance [5, 10, 37], which we describe in Section 3.1. Currently,
no global or even dataset-level explanation techniques that rank concepts exist
for image-based models. Instead, researchers typically rely on instance-based ex-
planations in the form of activation maps or masks [21, 28, 32]. Our approach
helps us understand dataset-level behavior of image-based models by permuting
concepts across images using text-conditioned diffusion models.
Generative AI-enabled classifier explanations. Recent breakthroughs in
generative AI have helped researchers probe black-box models. For example,
generative models can produce counterfactual images that subsequently change
a classifier’s predictions [8,25], and such changes can be linked to either changes
in natural language text, concept annotations, or expert feedback to better un-
derstand why a model prediction might change. DEPICT is similar in that it
also relies on generative AI techniques to produce images with changed con-
cepts. However, in contrast, DEPICT generates a ranking of concepts based on
their effect on downstream model performance, rather than their effect on model
predictions.
Concept bottleneck models. Concept bottleneck models (CBMs) are inter-
pretable models trained by learning a set of neurons that align with human-
specified concepts. They support interventions on concepts compared to end-to-
end models [18,20,22,24,36,38,40,41]. One can perform permutation on CBMs by
permuting concept predictions in the bottleneck layer. DEPICT differs by han-
dling a more common case of models. We cannot assume all models are CBMs:
many important networks are black-box, non-CBM models whose parameters
we do not have access to (e.g., proprietary/private data or training algorithms).
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Image editing. Recent advances in text-to-image diffusion models [26, 29, 31]
allow for high-quality text-conditioned image synthesis, enabling easy manipu-
lation of images via text-edits. DEPICT relies on generative models conditioned
on natural language text that can be modified to produce an edited version of an
image. Prior work on image editing has focused on limited types of edits (e.g.,
style transfer or inserting objects [17, 44]). DEPICT is an application of these
techniques and advances in these areas of work would improve DEPICT.

3 Method

Overview. In our setting, we have a set of test images and a black-box model
f : I → Y that maps images in I to predictions in Y. In standard permutation
importance, one permutes a single feature across instances while holding the oth-
ers constant and examines the drop in model performance relative to baseline.
This does not yield meaningful explanations when permuting in pixel space. In-
stead, we assume there is a relevant concept-based text space T where permuting
concepts is easy (e.g., image captions). Given a text-conditioned diffusion model
g : T → I, we permute concepts in text space T , transform captions to image
space I with g, and use the generated images as a proxy for permutations in
image space.

Accurately estimating model feature importance via this approach requires
three testable assumptions: (1) Permutable concepts: we can permute a set of rel-
evant concepts in T ; (2) Effective generation: we can obtain a mapping g : T → I
such that f can accurately classify generated instances; (3) Independent Permu-
tation: while changing a concept for a set of instances, the other concepts in the
instances do not change. These assumptions require some algorithmic decisions
and data considerations that we discuss below and verify in our experiments.

3.1 Permutation Importance on Tabular Data

We begin by recounting how permutation importance is performed in tabular
data [5] to aid in describing our approach. For simplicity we focus on binary
classification, although permutation importance generalizes to multi-class clas-
sification and even regression. We assume: an input space T (e.g., Rd for d-
dimensional numerical tabular data); a classifier f : T → {0, 1} that maps from
the input space to binary decisions; N labeled examples {xi, yi}Ni=1; and a loss L
evaluating performance (e.g., error). The reference performance of the classifier
on the unpermuted data is given by a = 1

N

∑N
i=1 L(yi, f(xi)) (Fig. 2).

In permutation importance, one permutes a single coordinate of the data
j for j = 1, ..., d while holding the others fixed and measures the change in
performance relative to the original model performance a. Let {x̄j

i}Ni=1 be the N
examples with the jth coordinate permuted among the samples. One calculates
the performance of f on the permuted test set, as aj = 1

N

∑N
i=1 L(yi, f(x̄

j
i )). The

permutation importance of the jth coordinate for f is the difference between
the original accuracy and the accuracy while permuting j, or a − aj . Given
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Fig. 3: Model feature importance across synthetic data models. We compare
the DEPICT ranking to GradCAM [32] and LIME [28]. Left: DEPICT has higher
correlation with the standardized regression weights compared to GradCAM and LIME.
Right: ranking generated for 4/100 randomly chosen classifiers. RC: red circle; BC: blue
circle; GC: green circle; RR: red rectangle; BR: blue rectangle; GR: green rectangle.

the inherent randomness, this process is typically repeated many times and the
average importance value is used to rank the d variables.

Permutation importance is not without limitation. In particular, high degrees
of collinearity among input features may lead to incorrect beliefs that a particular
feature is not relevant to the outcome or label [23,33]. Thus, its use in generating
hypotheses of associations is limited. However, we are primarily interested in
what the model is relying on and not the underlying relationships in the data
generating process. If there are two highly correlated features and the model is
only relying on one, permutation importance will correctly identify which one.

3.2 Permutation Importance on Image Data

We now extend permutation importance to images. We assume: a space of images
I; a classifier f : I → {0, 1} mapping images to predictions; N labeled images
{xi, yi}Ni=1; and a performance metric L.

The crux of the method is a parallel concept text space T and functions for
moving between T and I. In particular, we assume there is a concept text space
like scene image captions with D concepts (such as the presence of a chair) that
can be permuted like tabular data and turned into text easily. For simplicity, we
also assume that we have corresponding concept labels {ci}Ni=1 for each input
with each ci ∈ T , where we can represent ci ∈ {0, 1}d, a d-dimensional binary
vector indicating the presence of each concept. To move between the spaces,
we assume a generative model g : T → I that maps a concept vector to a
sample image matching the concepts (Fig. 2); we also assume a concept classifier
h : I → T that can accurately detect whether a concept appears in an image.
For instance, g might be a diffusion model trained to map from a caption to an
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Fig. 4: AUROC and top-k accuracy of methods across varying importance
thresholds. We plot DEPICT’s performance against GradCAM and LIME. Data-
points in the upper left half are DEPICT outperforming GradCAM and LIME, while
in the lower half are DEPICT underperforming. Across all three sets of tasks, DEPICT
outperforms both GradCAM and LIME in terms of AUROC and top-k accuracy when
predicting important concepts across most thresholds.

image and h might be a classifier trained to recognize a set of concepts from an
image (e.g., if the image contains a couch).

Given the classifier, diffusion model, and concept classifier, we now set up
permutation importance for images. We start with the reference performance
on unpermuted generated data, a′ = 1

N

∑N
i=1 L(yi, f(g(ci))). To test the impor-

tance of the jth concept, we permute the jth entry in the concept space across
text instances and map the text to new images, creating a new test set g(cj) for
each permuted concept j. We repeat this process P times to generate a distribu-
tion of observed differences in performance between the original generated test
set and the permuted test set, a′−aj , where aj =

1
N

∑N
i=1 L(yi, f(g(c

j
i ))). Large

performance drops indicate the model relied on the concept, while no drop in
performance suggests the concept is unimportant to the model and this partic-
ular dataset. We can then rank concepts by their average performance drop.

Importantly, the approach assumes effective generation, meaning that the
classifier f performs similarly on generated images from g conditioned on the
original dataset’s captions as it does the real images. To test whether this as-
sumption holds we do two tests. First, we measure the difference between a and
a′, where a = 1

N

∑N
i=1 L(yi, f(xi)). If the difference is large, then this assumption

does not hold. If the difference is small, we look for more granular differences by
computing concept classifier performance between the original images and the
generated images, i.e., 1

N

∑N
i=1 Lj(yi, h(xi))− 1

N

∑N
i=1 Lj(yi, h(g(ci))), where Lj

is the concept classifier performance in predicting concept j. A drop in either tar-
get model performance overall or one concept via the concept classifier suggests
that the assumption of effective generation does not hold.

Finally, DEPICT assumes independent permutation. If changing one concept
also changes other concepts in the image space, we cannot trust the permutation
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Fig. 5: Generated Images. Examples of generated images where each concept is
(upper) or is not (lower) in the caption used to generate the image. The generated
images reflect whether or not the concept is included in the caption.

importance results. Thus, after permuting concept j, we calculate the concept
classifier performance on the generated images before and after permutation.
For all non-permuted concepts k ̸= j, we expect concept classifier performance
to hold, and for permuted concept j, we expect performance to drop.

4 Experiments & Results

To validate DEPICT, we first consider a synthetic setting where generation is
easy, followed by two real-world datasets: COCO [19] and MIMIC-CXR [14,16].

4.1 Synthetic Dataset

In our synthetic dataset, images can contain any combination of six concepts
that each consist of a distinct colored geometric shape: {red, green blue} ×
{circle, rectangle}. Each image is generated according to an indicator variable
s ∈ {0, 1}6 indicating whether each shape is present. s is drawn per-component
from a Bernoulli distribution with p = 0.5. We generate the image Xi from s
by placing shapes randomly, such that no two shapes overlap. We construct a
caption for each image by with descriptions of each shape joined by a comma
(e.g., a c-colored circle at (x, y) with radius r is described as “c circle (x, y) r”)
(full details are in supplementary 8).

Given images, we generate tasks and corresponding labels. Each task is de-
fined by a weight vector w ∈ R6 over the six indicator variables where each
component is drawn uniformly over [0, 1]. Given the weight vector, the score of
an image with indicator vector s is given by w⊤s. We define a binary classifica-
tion task by thresholding image scores at the median of the dataset.
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Fig. 6: Model feature importance across primary feature models. We compare
the ranking produced by DEPICT, GradCAM [32] and LIME [28] to the oracle gen-
erated by permuting concepts at the bottleneck. Left: DEPICT has higher correlation
with the oracle compared to LIME and GradCAM. Right: ranking generated for 3 of
the 15 classifiers. DEPICT detects the primary concept in all classifiers as well as the
low importance of the non-primary concepts, while GradCAM and LIME do not.

Target models. We aim to generate concept-based explanations for a target
model that predicts yi. We use a concept bottleneck model [18] for full control: we
first predict all concepts {ci}Ni=1, by training a model to predict shape presence
as a vector ĉi. The target model is defined as a weighted sum of ĉi via the weights
generated above, ŷi = wT ĉi. This way, we know the exact model mechanism and
consider the weight vector w as the true model feature importance.
Diffusion model. We fine-tune Stable Diffusion [29] on 50,000 synthetic images,
with captions describing the presence and location of each shape separated by
commas (full details are in supplementary 8).
Using DEPICT. To generate concept rankings, we permute each concept in
the text space 500 times. For each permutation, we generate a dataset using the
diffusion model and pass the images through the target model, measuring the
AUROC drop compared to the unpermuted generated dataset. Then, the mean
AUROC drop across all 500 permutations is used to rank concepts.
Oracle model feature ranking. We calculate standardized regression coeffi-
cients as the oracle ranking of features by multiplying each model’s weight vector
w by the standard deviation of the concept predictions on the real images [6,27].
We also compare to an oracle that permutes concept predictions of the real data
at the bottleneck of the network in supplementary 8. We note that DEPICT
does not assume access to model parameters needed to calculate such oracles.
Baselines. We compare the ranking produced by DEPICT to a ranking pro-
duced by GradCAM [32] and LIME [28], two commonly used explanation meth-
ods for image-based classifiers. Since GradCAM and LIME generate instance-
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Fig. 7: Permutation examples. We show permutation examples for two primary
feature models that rely on either “person” or “tv” when predicting home or hotel.
When permuting the most important concept, model performance is low, whereas when
permuting concept that the model does not rely on, model performance does not drop.

based explanations, we extend these approaches to generate a ranking by relying
on concept annotations and their corresponding mask. Because we have access to
the image generation process of the synthetic dataset, we generate an concept-
level mask for all concepts in each image. Then, for each image, we calculate the
intersection-over-union (IOU) between each concept-level mask and the Grad-
CAM or LIME mask generated by the classifier (full details are in supplementary
8). Then, we rank concepts by their mean IOU across the entire test set. We note
that computing this ranking for GradCAM and LIME requires access to image-
level masks as well as the model parameters, while DEPICT does not. Because
GradCAM and LIME are generated via the real images, we only generate one
importance value for each concept in each image, compared to a distribution of
model feature importances generated by DEPICT.
Evaluation & Results. Evaluation consists of two parts. We quantitatively
and qualitatively compare to the oracle and baselines, and we validate our as-
sumptions of effective generation and independent permutation.

Model feature ranking evaluation. We plot the DEPICT, LIME and Grad-
CAM generated model feature importances against the oracle (standardized
weight vector w) across all 100 models and measure the Pearson’s correlation [7],
with 95% bootstrapped confidence intervals. Methods that correctly rank con-
cepts will have high correlation with the oracle. We also show boxplots of each
method’s feature importances for a randomly chosen subset of models and com-
pare to the oracle ranking. Additionally, we consider each method’s permutation
importance as a prediction task for which concepts are predicted to be impor-
tant. We label each concept as “important” or “not important” by binarizing the
oracle model feature importances across all weight thresholds k, and calculate
the AUROC between the generated model feature importance and binarized
feature importance. Finally, we calculate the agreement in the top-k features
between the ground truth weights and each method. We consider k ∈ [1,6].

Results. DEPICT has the highest correlation with the oracle feature weights
of each model (0.92 [95%CI 0.90-0.93]), followed by LIME (0.73 [95%CI 0.68-
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Fig. 8: Model feature importance across mixed feature models. We compare
the ranking produced by DEPICT, GradCAM [32] and LIME [28] to the oracle gener-
ated by permuting concepts at the bottleneck. Left: DEPICT has the highest correlation
with the oracle model feature importance. Right: We show the ranking generated by
DEPICT, GradCAM and LIME for three of the mixed feature models.

0.76]), and GradCAM (0.08 [95%CI 0.00-0.16]) (Fig. 3). Looking at individual
models, while both DEPICT and LIME produce feature importance rankings
which are highly correlated with the oracle, DEPICT better aligns with the
magnitude of the ground truth feature importances. Furthermore, DEPICT per-
forms on par or better than both GradCAM and LIME in terms of AUROC and
top-k accuracy across all weight thresholds (Fig. 4a). If considering the oracle as
permuting concepts at the bottleneck, DEPICT has a significantly higher correla-
tion with the oracle (0.98 [0.97-0.98]) compared to GradCAM (0.07 [-0.01-0.15])
and LIME (0.72 [0.68-0.76]) (supplementary Fig. 11).

Validation of assumptions. To check for effective generation, we measure AU-
ROC between real and generated images on the target and concept classifier. To
check for independent permutation, we rely on a concept classifier that predicts
the presence of the six shapes that we are permuting (supplementary 8). For each
concept that is permuted across images (e.g., red circle), the concept classifier
should perform worse in classifying the permuted concept, while still classifying
the other concepts well.

Results. In terms of effective generation, the differences in AUROC between
real and generated images for all models was <= 0.12 for both the target mod-
els and concept classifiers (supplementary Tables 2, 3). Given that all AUROC
values were above 0.88, we consider this effective generation for this task. Fur-
thermore, each time a concept is permuted, the concept classifier is no longer
able to classify the specific concept, while still classifying the other concepts well
(supplementary Fig. 12). This validates independent permutation for each of the
concepts.



DEPICT: Diffusion-Enabled Permutation Importance 11

4.2 Real Dataset

We evaluate DEPICT’s ability to generate concept-based explanations of image
classifiers on COCO [19]. We consider two settings reflecting different levels of
difficulty in ranking concepts, showing that DEPICT generates better rankings
compared to baselines.
Target models. We consider two sets of scene classifiers. For all target models,
we learn a concept bottleneck g(x) ∈ Rc where c is 15 concepts that the classifier
may rely on (see supplementary 9 for full list). Then, we learn a linear classifier
f(g(x)) parameterized by w to map concepts to a final prediction. We train two
sets of target classifiers:

Primary feature models. We first train binary tasks to classify images as
{home or hotel} or {not}. By design, these models each rely heavily on one of
15 concepts in the image: we resampled the training data such that there was a
1:1 correlation between a concept in the image (e.g., person or couch) and the
outcome, totalling 15 classifiers (full list in supplementary 9).

Mixed feature models. We also trained six scene classification tasks, where
a model classifies if an image is one of six scenes: (1) shopping and dining,
(2) workplace, (3) home or hotel, (4) transportation, (5) cultural, and (6)
sports and leisure. We did not resample the training data to encourage the
model to rely on specific concepts, but instead used the entire training set to let
the model rely on any set of concepts (see supplementary 9 for details).
Diffusion model. We fine-tune Stable Diffusion [30] on COCO [19] to generate
images for our task (examples in Fig. 5). We use COCO concept annotations as
captions. E.g., if an image contains 2 persons and 1 couch, the corresponding
caption is “2 person, 1 couch.” We generate a scene label for each image using a
network trained on the Places 365 dataset [43] (full details in supplementary 9).
Using DEPICT. To generate model feature importances with DEPICT, we
permute each concept in the text-space 25 times. For each permutation, we gen-
erate a dataset with the diffusion model and pass these images through the target
model. The AUROC drop compared to the dataset generated with non-permuted
text yields a distribution of model feature importance values per concept.
Oracle model feature ranking. We again calculate standardized regression
coefficients using the learned weight vector w. We also calculate an additional
oracle by permuting concepts at the bottleneck in the supplementary.
Baselines. We compare DEPICT to GradCAM [32] and LIME [28]. We measure
the IOU between the GradCAM and LIME masks using each object annotation
mask for each image in COCO (full details are in supplementary 9).
Evaluation & Results. We quantitatively and qualitatively evaluate DEPICT
on COCO just as we did in the synthetic setting, as well as validate the as-
sumptions of effective generation and independent permutation using a concept
classifier trained to predict the concepts in COCO (full details in supplementary
9). Furthermore, for quantitative evaluation, we consider k ∈ [1,15], as there are
15 concepts to threshold over in the COCO models.

Primary feature model evaluation. DEPICT has higher correlation with the
oracle (0.73 [0.59-0.83]) compared to GradCAM (-0.10 [-0.23-0.03]) and LIME
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Age < 60 Age > 60 BMI < 30 BMI > 30 Sex = F Sex = M

Fig. 9: Generated X-rays. We show generated X-rays with patient age, body mass
index (BMI), and sex permuted. While difficult to permute such concepts in pixel space,
a diffusion model can map permutations from text (e.g., “age>60") to pixel space.

(0.15 [-0.02-0.30]) (Fig. 6). We show rankings for three of 15 randomly chosen
classifiers in Fig. 6 as well as model performance on permuted datasets in Fig.
7. DEPICT also outperforms both GradCAM and LIME in terms of AUROC
and top-k accuracy across most thresholds (Fig. 4b). If considering the oracle as
permuting concepts at the bottleneck, DEPICT has a higher correlation with the
oracle (0.90 [0.83-0.95]) compared to GradCAM (-0.05 [-0.17-0.10]) and LIME
(0.19 [0.03-0.35]) (supplementary Fig. 13).

Mixed feature model evaluation. DEPICT has higher correlation with the
oracle feature importance (0.35 [-0.05-0.66]) compared to GradCAM (0.15 [-
0.21-0.50]) and LIME (0.27 [0.01-0.52]) (Fig. 8). For individual scene classifiers,
DEPICT generates more reasonable rankings compared to GradCAM and LIME.
DEPICT also outperforms both GradCAM and LIME in terms of AUROC and
top-k accuracy across most thresholds (Fig. 4c). If considering the oracle as
permuting concepts at the bottleneck, DEPICT has a higher correlation with the
oracle (0.49 [-0.01-0.79]) compared to GradCAM (0.17 [-0.18-0.50]) and LIME
(0.30 [0.04-0.53]) (supplementary Fig. 14).

Validation of assumptions. For the primary feature models, DEPICT achieves
both effective generation in target models and concept classifiers (< 0.10 AUROC
change between real and generated images) (supplementary Tables 4, 5) and in-
dependent permutation (minimal changes in concept classifier performance for
non-permuted concepts) (supplementary Fig. 15). For the mixed feature models,
DEPICT achieves effective generation for three of the six scene classifiers (sup-
plementary Tables 6, 7) and independent permutation on all classifiers (supple-
mentary Fig. 16).

4.3 DEPICT in Practice: A Case Study in Healthcare

Until now, we have applied DEPICT to datasets in which all concepts that
a model might rely on can be permuted. However, depending on the diffusion
model and/or our knowledge of important concepts, we may only have the ability
to permute on a subset of concepts on which the model relies. Here, we discuss
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Table 1: DEPICT applied to MIMIC-CXR. We show AUROC and 95% boot-
strapped confidence intervals on real and generated images for the models that rely on
patient age, BMI, or sex. When permuting the concepts, model performance signifi-
cantly drops, showing that the models rely on each of the concepts in some way.

BMI Age Sex

Real Images 0.98 (0.97 - 0.98) 0.89 (0.87 - 0.91) 1.00 (1.00 - 1.00)
Generated Images 0.97 (0.96 - 0.97) 0.85 (0.83 - 0.87) 1.00 (0.99 - 1.00)
DEPICT 0.70 (0.70 - 0.71) 0.59 (0.59 - 0.59) 0.53 (0.53 - 0.54)

how DEPICT can apply in such scenarios. Rather than generating a ranking of
all concepts, we ask the question: does the model rely on a specific concept?

We consider MIMIC-CXR [15, 16], a dataset of paired X-rays and radiology
reports. We consider the task of classifying pneumonia from the patient’s chest X-
ray. We use patient demographics as concepts (Fig. 9): body mass index (BMI)
> 30, age > 60, sex = Female, and prepend them to the patient’s radiology
report, e.g., “Age: 1, BMI: 0, Sex: 1, Findings:...”, where “Findings:”
is the beginning of the report. The presence of the entirety of the radiology
report text allows the diffusion model to generate high quality images. Since
concept masks are not available, we cannot apply GradCAM and LIME.
Target models. We train three target models on MIMIC-CXR to predict the
presence of pneumonia on the chest X-ray. By design, these models were trained
such that they heavily rely on either the patient’s age, body mass index (BMI)
or sex. To achieve this, we resampled the training data such that there was a 1:1
correlation between each concept and the outcome of pneumonia. Furthermore,
the target model was a concept bottleneck constrained to 17 concepts: 13 radi-
ological findings on the chest X-rays, along with patient age, BMI, and sex (full
details in supplementary 10).
Diffusion model. We fine-tune Stable Diffusion [29] on MIMIC-CXR X-rays
and radiology reports prepended with concepts (details in supplementary 10).
Using DEPICT. To generate feature importances, we permute each concept
25 times. While permuting only a few concepts per classifier does not generate
a full ranking, a significant model performance drop on the permuted test set
reflects that the model relies on the concept in some way. We discuss validation
of assumptions when not all concepts can be permuted in the supplementary 10.
Results. The difference in classification AUROC between real and generated
chest X-rays for all three target models as well as concept classifiers on the per-
mutable concepts ranges from 0.0 to 0.04 (supplementary Tables 8, 9), suggesting
effective generation. For independent permutation, we observe some changes in
concept classifier performance after permutation when classifying concepts such
as lung opacity and lung lesion (supplementary Fig. 18). Thus, one must proceed
with caution about interpreting the importance of BMI, age, and sex, as they
may be confounded by changes to other concepts such as lung opacity or lung
lesion.
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For all three target models, permuting patient BMI, age, and sex results in a
significant drop in model performance (BMI: 0.70 [0.70-0.71] vs. 0.97 [0.96-0.97];
age: 0.59 [0.59-0.59] vs. 0.85 [0.83-0.87]; sex: 0.53 [0.53-0.54] vs. 1.00 [0.99-1.00])
(Table 1). We can conclude that the models rely on these concepts in some
way. DEPICT could allow model developers to probe models pre-deployment to
potentially catch when models are relying on a concept that they should not be.

5 Limitations

DEPICT’s success relies on the diffusion model’s ability to permute concepts ef-
fectively and independently. In the experiments involving the synthetic dataset,
DEPICT’s ranking was highly correlated with the ranking generated by directly
permuting concepts at the bottleneck (supplementary Fig. 11). Subsequently,
DEPICT’s ranking was also highly correlated with the ranking of the standard-
ized regression weights (Fig. 3). On the other hand, as DEPICT’s ranking’s cor-
relation with the ranking generated by permuting at the bottleneck decreased
(supplementary Fig. 13, 14), so did its correlation with the logistic regression
weights (Fig. 6, 8).

Furthermore, when the diffusion model is conditioned on both permutable
and non-permutable text (e.g., as in Section 4.3), the diffusion model could strug-
gle to permute concepts in the image space if there are mentions of permutable
concepts in the non-permutable text space (e.g., if one is trying to permute
the patient age, and the radiology report mentions the original age of the pa-
tient). While the concept classifier is used to ensure that the concept of interest
has been indeed permuted, this still limits the applicability of DEPICT. Mov-
ing forward, DEPICT’s success relies on good generative models that can map
permuted concepts in the text space to the image space effectively.

6 Conclusion

Understanding the reason behind AI model predictions can aid the safe de-
ployment of AI. To date, image-based model explanations have been limited to
instance-based explanations the pixel space [28, 32], which are difficult to in-
terpret [1, 2, 12]. Instead, DEPICT generates image-based explanations at the
dataset-level in the concept space. While directly permuting concepts in pixel
space is difficult, DEPICT permutes concepts in the text space and then gen-
erates new images reflecting the permutations via text-conditioned diffusion.
DEPICT relies on a text-conditioned diffusion model that effectively generates
images and independently permutes concepts across images. While we have in-
cluded checks to verify these assumptions, we cannot guarantee that such a
diffusion model is available. However, given the rapid progress of the field, we
expect that the availability or the ability to train such models will improve, in-
creasing the feasibility of DEPICT.
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7 Supplementary Materials Overview

This supplementary material provides additional details of the paper along with
supplementary results that were omitted from the main paper due to space con-
straints. In Section 8 we present details and additional supplementary results of
the synthetic dataset experiments. In Section 9, we present details and additional
supplementary results of the real dataset (COCO [19]) experiments. Finally, in
Section 10, we present details and additional supplementary results of the case
study in healthcare (MIMIC-CXR [14,16]).

8 Synthetic Validation

8.1 Experiments

Dataset. Each image in the dataset is described by a set of concepts describing
distinct colored geometric shapes: {red, green blue} × {circle, rectangle}. Given
the vector of indicator variables si ∈ R6, we construct the image Xi by randomly
placing each of the shapes in the image such that no two shapes overlap. The
caption for the image is then a string describing each of the shapes in the image,
separated by a comma. For instance, an image containing a red-colored circle
of radius 4 centered at (5, 10) and a blue-colored rectangle with the top-left
corner at (20, 30) and bottom-right corner at (50, 60) would have the caption
“red circle 4 (5, 10), blue rectangle ((20, 30) (50, 60))". We show examples of real
and generated images of the synthetic shapes dataset in Fig. 10. We note that,
while the diffusion model does not generate the correct locations for the shapes,
this does not affect downstream classification results which do not rely on shape
locations.
Diffusion Model. A diffusion model initialized on Stable Diffusion [30] was
fine tuned for 105000 iterations on 107,000 images with a batch size of 16 at a
256x256 resolution and a learning rate of 1.0e-4. We fine-tuned only the U-Net
and text-encoder of the model.
Concept Classifier. The concept classifier g was a CNN with 5 layers, each
consisting of a convolution, batch norm, ReLU, and max pooling followed by a
3-layer multilayer perceptron that made six predictions for the presence of the
six shapes. The model was trained on 50,000 images for 15 epochs.
Baselines. We generated Grad-CAM [32] and LIME [28] explanations for the
predicted class of each image. The class prediction was determined by threshold-
ing model predictions that maximized the true positive rate while minimizing
the false positive rate across the test set. Each GradCAM heatmap was first
converted to a binary mask by thresholding at the lowest non-zero value of the
Grad-CAM heatmap. 5 features were used to generate each LIME mask. For ev-
ery shape in the image, we calculated the intersection over union (IOU) between
the shape and the explanation. Finally, we ranked shapes by their mean IOU
across the entire test set.
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Fig. 10: Comparison between real and generated images for synthetic
dataset. We compare real and generated images from the diffusion model conditioned
on the original captions. We find that the generated images look realistic and reflect
the shapes present in the captions.

Table 2: Effective generation validation for synthetic dataset models. We
report AUROC (median, IQR) on both real and generated images for 100 target models
on the synthetic dataset.

AUROC (median, IQR)

Real Images 0.99 (0.98-1.0)
Generated Images 0.91 (0.84-0.94)
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Table 3: Effective generation validation for synthetic dataset concept clas-
sifier. We show AUROC on both real and generated images for the concept classifier
on the synthetic dataset across all six shapes. The concept classifier is able to detect
all six shapes from the generated images with high accuracy.

red circle green circle blue circle red square green square blue square

Real Images 1.00 0.99 1.00 1.00 1.00 1.00
Generated Images 0.97 0.95 0.88 0.96 0.95 0.93
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Fig. 11: Model feature importance across synthetic data models with the
oracle generated by permuting concepts at the bottleneck. We compare the
DEPICT ranking to GradCAM [32] and LIME [28]. Left: DEPICT has higher cor-
relation with the standardized regression weights compared to GradCAM and LIME.
Right: ranking generated for 4/100 randomly chosen classifiers. RC: red circle; BC: blue
circle; GC: green circle; RR: red rectangle; BR: blue rectangle; GR: green rectangle.
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Fig. 12: Independent permutation validation for synthetic dataset. We re-
port the average change in AUROC (unit = 0.01) of the concept classifier for the six
shapes when permuting each individually for both real (oracle) and generated images.
We observe permutation independence: a large change in performance when classify-
ing permuted concepts, and minimal change in performance for unpermuted concepts.
Colormap: 0 50. RC: red circle, BC: blue circle, GC: green circle, RR: red
rectangle, GR: green rectangle, BR: blue rectangle.
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9 COCO

9.1 Experiments

Dataset. COCO [23] contains 117k training and 4.5k validation images anno-
tated with 80 object categories, which we consider to be concepts in the images.
COCO also has 20k test images that are not labelled with object categories.
Instead, we randomly sampled 10k images from the training set to use for test
sets in downstream classification tasks, resulting in a final training set of 107k
images. To caption each image, we disregarded the natural language captions
corresponding to the images, and instead constructed new captions consisting of
all the concepts in the images. E.g., if an image contained 2 persons and 1 couch,
the corresponding caption is “2 person, 1 couch.” The 15 concepts used were: per-
son, bottle, cup, bowl, chair, couch, bed, dining table, tv, laptop, remote, cell
phone, oven, sink, and book. For downstream scene classification, we labelled
each of the images using a ResNet trained on Places365 [43]. We mapped the
scene label to one of six indoor labels from the MIT SUN Database [39]: shop-
ping and dining, workplace (office building, factory, lab, etc.), home or hotel,
transportation (vehicle interiors, stations, etc.), sports and leisure, and cultural
(art, education, religion, military, law, politics, etc.).
Diffusion Model. We fine-tuned a Stable Diffusion [30] model for 1.34 million
iterations with a batch size of 64 on COCO image-caption pairs at a 256x256
resolution and a learning rate of 1.0e-4. We fine-tuned only the U-Net and text-
encoder of the model.
Concept Classifier. We fine-tuned a DenseNet-121 [11] pretrained on Ima-
geNet [9] to predict the presence of the 80 objects in each image. The model
was trained using stochastic gradient descent with momentum minimizing bi-
nary cross-entropy loss with a learning rate of 1.0e-1, momentum of 0.8, weight
decay of 1.0e-4 and a batch size of 128. Early stopping based on validation loss
with a patience of 5 was used after at least 8 training epochs. During training,
images were reshaped such that their smaller axis was 256 pixels, and then center
cropped along their longer axis to 256x256. Images were also randomly rotated
up to 45 degrees, and vertically flipped with probability 0.3. We used ImageNet
normalization across all experiments.
Primary feature models. We trained target classifiers on a binary task: home
or hotel or not. We only considered images labelled with one of these two
scene-level labels. Furthermore, for each of the target classifiers, we subsampled
the data such that there was a 1:1 correlation between the presence of a primary
concept (e.g., person) and the outcome. We trained 15 models using 15 concepts
that were present in more than 5% of the data: person, bottle, cup, bowl, chair,
couch, bed, dining table, tv, laptop, remote, cell, phone, oven, sink, and book.
Models were trained with momentum 0.8, weight decay 1.0e-4, and learning rate
of 1.0e-1. The best model was chosen as the epoch with the lowest validation
loss. During training, images were reshaped such that their smaller axis was 256
pixels, and then center cropped along their longer axis to 256x256. Images were
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also randomly rotated up to 45 degrees, and vertically flipped with probability
0.3. We used ImageNet normalization across all experiments.
Mixed feature models. We trained six total scene classifiers, where a model
classifies if an image is one of six indoor scenes: (1) shopping and dining, (2)
workplace, (3) home or hotel, (4) transportation, (5) cultural, and (6)
sports and leisure. Here, we do not resample the training data to encourage
the model to rely on specific concepts, but rather use the entire training set to
let the model rely on any combination of concepts. Models were trained with
momentum 0.8, weight decay 1.0e-4, and a learning rate of 1.0e-1. The best
model was chosen as the epoch with the lowest validation loss. During training,
images were reshaped such that their smaller axis was 256 pixels, and then center
cropped along their longer axis to 256x256. Images were also randomly rotated
up to 45 degrees, and vertically flipped with probability 0.3. We used ImageNet
normalization across all experiments.
Baselines. We generated Grad-CAM [32] and LIME [28] explanations for the
predicted class of each image. The class prediction was determined by threshold-
ing model predictions that maximized the true positive rate while minimizing
the false positive rate of the validation set. Each GradCAM heatmap was first
converted to a binary mask by thresholding at the lowest non-zero value of the
Grad-CAM heatmap. 5 features were used to generate each LIME mask. For ev-
ery object in the image, we calculated the intersection over union (IOU) between
the object mask and the explanation. Finally, we ranked objects by their mean
IOU across the entire test set.
Unconstrained primary feature models. In reality, we might want to ex-
plain a model that is not a concept bottleneck. Thus, we also trained primary
feature models end-to-end. When the model is not constrained to a specific set
of concepts, we want to observe that DEPICT still detects the primary feature
as the most important concept in a classifier’s decisions.

9.2 Results

Unconstrained primary feature models. We compare three randomly se-
lected unconstrained (trained end-to-end) primary feature model rankings gen-
erated by DEPICT to those generated by GradCAM and LIME in Fig. 17.
DEPICT identifies the primary feature in all cases as significantly more impor-
tant compared to the other concepts. While we do not have an oracle model to
compare to in the unconstrained setting (as the model is not a CBM, and thus
an oracle cannot be calculated), DEPICT’s results do align with the fact that
we resampled the training data to encourage the models to focus on the primary
feature. Note that these models use the same data as the original primary fea-
ture models, so the validation of assumptions (effective generation, independent
permutation) hold for these models.
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Table 4: Effective generation validation for COCO primary feature models.
We show AUROC on both real and generated images for the primary feature models,
each with one primary feature. The models are able to classify generated images with
high AUROC and a maximum difference between the real and generated images of
0.09.

Primary Feature Model
person bottle cup bowl chair couch bed dining table tv laptop remote cell phone oven sink book

Real Images 0.97 0.90 0.89 0.93 0.87 0.94 0.95 0.93 0.95 0.96 0.89 0.82 0.99 0.99 0.86
Generated Images 0.91 0.82 0.80 0.87 0.79 0.86 0.89 0.88 0.95 0.92 0.81 0.80 0.95 0.91 0.80
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Table 5: Effective generation validation for COCO concept classifiers in
primary feature models. We show AUROC on real and generated images for concept
classifiers on COCO across all primary feature models and all concept classifier targets.
The concept classifier is able to classify generated images with high AUROC and a
maximum difference between the real and generated images of 0.07.

Primary Feature Model
Person Bottle Cup Bowl Chair

Concept Classifier Target Real Gen Real Gen Real Gen Real Gen Real Gen

Person 0.95 0.92 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97
Bottle 0.86 0.83 0.87 0.86 0.87 0.81 0.87 0.82 0.86 0.82
Cup 0.86 0.84 0.83 0.84 0.84 0.81 0.85 0.85 0.86 0.86
Bowl 0.91 0.88 0.88 0.88 0.91 0.89 0.93 0.89 0.92 0.91
Chair 0.86 0.87 0.86 0.86 0.87 0.88 0.86 0.87 0.86 0.82
Couch 0.91 0.92 0.91 0.89 0.92 0.90 0.90 0.91 0.91 0.90
Bed 0.94 0.92 0.92 0.93 0.90 0.91 0.90 0.91 0.94 0.95
Dining table 0.92 0.88 0.87 0.88 0.87 0.90 0.86 0.88 0.86 0.85
Tv 0.93 0.97 0.93 0.94 0.94 0.95 0.93 0.94 0.96 0.96
Laptop 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.97
Remote 0.86 0.86 0.91 0.89 0.91 0.87 0.89 0.86 0.91 0.87
Cell phone 0.88 0.87 0.88 0.88 0.89 0.88 0.87 0.88 0.84 0.88
Oven 0.98 0.92 0.98 0.94 0.98 0.92 0.98 0.95 0.97 0.95
Sink 0.97 0.92 0.98 0.96 0.97 0.95 0.97 0.94 0.98 0.97
Book 0.87 0.88 0.87 0.89 0.88 0.89 0.86 0.89 0.87 0.89

Couch Bed Dining Table Tv Laptop

Concept Classifier Target Real Gen Real Gen Real Gen Real Gen Real Gen

Person 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.97
Bottle 0.87 0.82 0.86 0.80 0.86 0.83 0.87 0.82 0.88 0.82
Cup 0.87 0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.87
Bowl 0.88 0.89 0.88 0.90 0.91 0.89 0.87 0.87 0.89 0.87
Chair 0.87 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.87 0.87
Couch 0.93 0.90 0.89 0.90 0.92 0.90 0.93 0.91 0.92 0.91
Bed 0.92 0.94 0.97 0.95 0.90 0.92 0.91 0.94 0.91 0.93
Dining table 0.86 0.89 0.87 0.87 0.93 0.89 0.86 0.87 0.86 0.90
Tv 0.94 0.95 0.94 0.94 0.94 0.95 0.96 0.96 0.95 0.95
Laptop 0.96 0.95 0.96 0.95 0.96 0.96 0.95 0.93 0.94 0.95
Remote 0.90 0.88 0.87 0.85 0.90 0.86 0.89 0.89 0.91 0.90
Cell phone 0.85 0.87 0.84 0.87 0.86 0.88 0.87 0.89 0.86 0.89
Oven 0.97 0.93 0.98 0.92 0.98 0.95 0.98 0.93 0.97 0.93
Sink 0.97 0.95 0.97 0.95 0.97 0.95 0.98 0.96 0.97 0.94
Book 0.87 0.89 0.86 0.88 0.87 0.88 0.88 0.87 0.88 0.90

Remote Cell Phone Oven Sink Book

Concept Classifier Target Real Gen Real Gen Real Gen Real Gen Real Gen

Person 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Bottle 0.87 0.82 0.89 0.83 0.88 0.83 0.87 0.80 0.88 0.83
Cup 0.88 0.87 0.87 0.87 0.86 0.85 0.86 0.82 0.87 0.86
Bowl 0.89 0.89 0.87 0.89 0.91 0.91 0.91 0.86 0.88 0.91
Chair 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.86 0.85 0.84
Couch 0.91 0.90 0.91 0.91 0.89 0.88 0.91 0.91 0.90 0.91
Bed 0.92 0.93 0.91 0.92 0.90 0.92 0.91 0.92 0.90 0.94
Dining table 0.86 0.90 0.88 0.90 0.87 0.89 0.88 0.89 0.87 0.89
Tv 0.95 0.96 0.95 0.96 0.93 0.94 0.94 0.94 0.95 0.95
Laptop 0.96 0.96 0.97 0.96 0.97 0.95 0.97 0.96 0.97 0.97
Remote 0.86 0.85 0.89 0.87 0.90 0.89 0.91 0.89 0.92 0.90
Cell phone 0.85 0.88 0.83 0.85 0.86 0.88 0.87 0.89 0.86 0.89
Oven 0.97 0.91 0.97 0.93 0.98 0.98 0.99 0.96 0.98 0.93
Sink 0.98 0.95 0.98 0.95 0.97 0.95 0.99 0.96 0.97 0.95
Book 0.88 0.88 0.87 0.89 0.86 0.86 0.88 0.87 0.85 0.85
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Table 6: Effective generation validation for COCO mixed feature models.
We show AUROC on both real and generated images for the mixed feature models.
The differences in classification AUROC between real and generated images range from
0.05 to 0.13 AUROC.

Mixed Feature Model
shopping and dining workplace home or hotel transportation sports and leisure cultural

Real Images 0.89 0.74 0.87 0.89 0.82 0.74
Generated Images 0.78 0.69 0.78 0.76 0.71 0.66
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Table 7: Effective generation validation for COCO concept classifiers in
mixed feature models. We show AUROC on real and generated images for concept
classifiers on COCO for the mixed feature models and all concept classifier targets. The
differences in classification AUROC between real and generated images range from 0.0
to 0.03 AUROC.

Real Images Generated Images

Person 0.97 0.97
Bottle 0.87 0.84
Cup 0.89 0.87
Bowl 0.91 0.90
Chair 0.89 0.88
Couch 0.94 0.93
Bed 0.97 0.96
Dining table 0.92 0.91
Tv 0.95 0.96
Laptop 0.97 0.96
Remote 0.95 0.92
Cell phone 0.89 0.88
Oven 0.98 0.96
Sink 0.98 0.95
Book 0.90 0.88
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Fig. 13: Model feature importance across primary feature models with the
oracle generated by permuting concepts at the bottleneck We compare the
ranking produced by DEPICT to GradCAM and LIME, with the oracle generated by
permuting concepts at the bottleneck. DEPICT has higher correlation with the oracle
compared to LIME and GradCAM.
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Fig. 14: Model feature importance across mixed feature models with the
oracle generated by permuting concepts at the bottleneck. We compare the
ranking produced by DEPICT to GradCAM and LIME, with the generated by per-
muting concepts at the bottleneck. DEPICT has higher correlation with the oracle
compared to LIME and GradCAM.
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person
bottle

cup
bowl
chair

couch
bed

dining table
tv

laptop
remote

cell phone
oven
sink

book

39 1 2 1 2 1 1 1 0 3 3 0 2 0 3
0 18 1 0 0 0 0 0 0 1 2 1 3 0 1
1 3 15 1 0 0 0 2 0 1 2 0 2 1 1
1 0 1 15 1 1 1 1 0 1 2 0 3 1 1
0 0 1 1 24 1 1 2 0 1 3 1 2 0 1
1 0 0 0 1 22 0 0 0 0 5 0 2 0 1
1 0 1 0 1 1 39 0 0 0 0 1 2 1 0
0 0 2 1 1 0 0 17 0 1 2 2 2 0 0
2 0 0 0 0 0 1 0 32 1 2 0 3 0 1
0 1 1 0 0 0 1 1 0 29 2 1 2 0 1
0 0 1 0 1 1 1 1 0 0 13 0 2 0 0
0 0 1 0 0 0 0 0 0 1 2 18 2 0 0
1 0 1 1 1 0 1 0 0 1 2 0 21 0 0
2 2 1 0 0 0 1 0 0 1 2 1 2 22 1
0 0 0 0 0 1 1 1 0 1 2 0 2 0 18

Primary Concept: Person
44 1 2 3 2 1 2 0 1 1 3 2 1 2 3
1 14 2 4 1 2 0 1 1 1 1 0 2 3 1
1 2 16 5 0 1 0 3 1 0 0 0 2 3 1
1 0 2 17 1 2 0 2 1 0 1 0 1 1 1
1 1 1 3 18 0 0 3 1 1 1 0 3 1 2
1 2 1 3 0 15 0 0 1 0 3 0 3 1 2
1 1 1 3 1 2 35 0 1 1 0 1 1 2 1
2 1 4 7 0 1 0 17 1 1 1 0 1 2 2
1 2 1 2 1 1 0 0 26 1 2 0 2 2 2
1 1 1 2 1 2 0 0 1 30 0 0 0 2 2
1 1 0 3 1 0 1 1 1 0 17 0 1 3 1
1 2 1 2 1 2 0 0 1 1 0 25 2 2 1
1 1 0 4 1 2 1 0 1 1 1 1 21 3 1
1 1 1 4 0 2 1 1 1 1 0 1 1 28 2
1 2 0 3 0 1 0 1 0 1 0 1 1 3 17

Primary Concept: Couch
44 2 0 2 1 1 1 0 0 2 2 1 2 3 2
1 15 3 2 0 1 0 1 1 1 1 0 3 2 0
1 3 17 3 0 2 0 3 0 1 1 1 2 3 1
1 0 3 17 1 1 0 2 0 1 2 1 2 2 0
1 1 2 1 20 0 0 2 1 2 0 1 4 1 1
1 2 1 1 1 20 0 0 1 1 2 1 3 2 1
1 2 2 1 1 2 38 0 1 1 3 1 1 2 1
2 1 5 5 0 1 0 18 0 1 1 0 2 3 1
1 2 2 1 0 1 1 0 28 1 3 1 3 2 1
1 1 2 0 0 1 0 1 1 31 1 0 1 3 1
1 1 1 2 1 1 0 0 0 1 6 1 2 2 0
1 1 2 0 1 2 0 1 1 1 1 26 2 3 0
1 1 2 2 1 1 1 0 0 1 1 2 21 3 0
1 1 2 2 0 2 1 1 0 1 2 1 0 29 1
1 1 2 1 0 1 0 1 0 1 1 1 2 3 17
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bed
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laptop
remote

cell phone
oven
sink

book

44 1 2 1 1 1 2 1 2 2 2 3 1 1 4
1 13 1 2 0 1 0 0 2 2 0 2 2 2 2
1 3 14 3 0 1 0 2 1 2 0 1 1 1 2
1 1 2 15 1 1 0 1 2 2 1 2 1 1 2
1 1 1 0 21 0 0 1 2 3 1 1 0 1 2
1 1 0 0 1 20 0 0 2 2 2 1 1 0 2
1 1 0 1 1 2 38 1 2 2 0 1 0 1 1
2 1 3 3 0 1 0 17 2 2 1 2 1 1 2
1 1 2 0 0 2 0 0 28 2 2 2 1 1 2
1 0 1 0 0 0 0 1 2 31 1 1 1 1 3
1 0 0 1 1 1 1 1 2 1 18 1 1 1 1
1 1 0 0 0 1 0 1 2 2 0 23 1 1 1
1 1 0 2 0 1 1 1 2 2 1 0 20 1 1
1 5 1 1 0 1 0 0 1 2 0 1 1 18 1
1 1 0 1 0 1 0 1 1 2 1 1 1 1 20

Primary Concept: Bottle
44 2 0 2 1 0 3 1 1 1 2 1 2 2 5
1 15 3 3 0 0 0 0 1 1 1 0 3 1 3
0 2 16 4 0 0 0 2 1 1 0 1 3 2 2
1 1 3 17 1 1 1 1 1 1 1 1 2 1 3
1 2 2 1 21 1 1 2 1 1 1 1 4 0 4
1 2 1 2 1 23 0 1 1 0 2 1 3 1 3
0 4 0 2 1 2 38 1 1 0 2 0 1 1 1
2 1 5 5 0 0 0 17 1 1 1 0 2 2 3
1 3 2 1 0 1 1 1 29 1 2 1 3 1 3
0 2 2 1 0 1 0 1 1 32 1 1 1 2 3
1 2 1 1 1 1 1 1 0 0 19 1 2 2 2
1 2 2 1 1 0 0 1 1 1 1 24 2 2 2
1 1 2 3 1 1 1 1 1 1 1 2 20 1 2
1 0 2 3 0 0 1 0 1 1 0 1 1 29 3
0 2 2 2 0 1 1 1 1 1 1 1 2 2 19

Primary Concept: Bed
44 0 1 2 0 0 1 1 0 2 2 0 0 2 4
1 16 2 3 0 0 1 0 1 1 0 1 2 1 1
1 3 17 4 0 0 1 3 0 1 0 2 1 2 1
1 0 3 17 0 0 0 1 0 1 0 1 1 1 1
2 0 1 2 22 1 1 2 0 1 1 1 3 0 2
1 1 0 2 1 22 0 1 0 1 2 1 2 1 1
1 0 1 2 1 1 37 1 0 1 0 0 0 1 0
2 0 4 6 1 0 0 18 1 1 0 0 1 1 1
1 2 2 2 0 0 1 0 29 1 2 1 2 1 1
1 1 1 1 0 0 0 2 1 30 0 3 1 1 2
1 1 1 2 0 0 1 2 0 0 19 1 1 2 0
1 1 1 1 0 0 0 1 1 1 0 20 1 1 0
1 0 1 3 0 0 1 1 1 1 1 0 23 1 1
2 1 1 2 0 0 2 0 0 1 0 1 0 28 1
1 0 1 2 0 0 1 1 0 1 0 1 1 2 18
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44 3 2 2 0 1 1 2 1 1 1 3 1 1 4
1 12 1 1 1 1 0 2 1 1 1 1 2 2 1
1 1 8 2 1 1 1 4 1 0 1 1 2 1 1
1 2 0 15 0 1 1 3 1 1 1 1 2 0 1
1 2 1 0 21 1 0 5 1 1 1 1 3 0 2
1 3 2 1 2 20 1 2 1 1 1 0 2 0 1
1 3 3 0 0 1 36 1 1 1 2 0 1 0 0
2 3 1 2 2 1 1 20 1 1 0 1 2 1 1
1 3 1 0 1 1 0 2 28 1 1 1 2 1 2
1 3 4 1 1 1 1 2 1 29 1 1 1 1 2
1 3 2 1 0 1 0 1 1 0 17 0 2 1 1
1 4 2 0 1 1 0 1 1 1 1 24 2 1 1
1 2 2 1 1 1 0 2 1 1 1 0 17 0 1
1 0 0 1 1 1 0 2 0 1 1 0 1 20 1
1 3 2 0 1 1 0 1 0 1 1 1 2 1 19

Primary Concept: Cup
44 0 0 2 0 1 1 0 1 2 1 1 1 3 3
1 16 3 1 0 1 0 1 1 1 1 0 0 3 0
1 4 16 2 0 1 1 1 1 1 1 1 0 3 0
1 1 3 14 1 1 0 1 1 1 1 0 1 1 1
2 0 2 0 21 1 1 2 1 2 1 1 0 1 1
1 0 1 0 1 19 1 1 1 1 2 1 0 2 1
1 0 2 1 1 1 36 2 1 1 1 1 1 2 0
2 1 5 3 1 1 1 13 1 1 0 0 0 2 1
1 1 2 0 1 1 0 1 25 2 1 0 0 2 1
1 0 3 0 1 1 1 2 1 30 1 0 1 2 1
1 0 1 0 1 1 0 2 1 1 15 1 0 3 0
1 0 2 0 0 1 0 1 2 1 1 25 1 2 0
1 1 2 1 1 1 0 1 1 1 1 1 18 4 1
2 2 2 1 0 1 0 1 1 1 1 1 3 23 1
1 0 2 0 0 1 0 1 1 1 1 1 0 3 18

Primary Concept: Dining table
44 1 0 2 0 2 1 1 1 1 3 2 2 3 2
1 12 3 3 0 1 0 1 1 1 1 0 1 1 0
1 1 14 4 1 2 0 4 1 1 1 0 1 1 0
1 1 2 12 0 1 0 2 1 1 2 0 1 0 0
1 1 1 2 21 0 0 4 0 1 2 0 2 0 1
1 2 0 3 2 20 0 1 0 1 3 1 1 0 1
1 1 1 2 0 2 36 0 1 1 1 1 1 0 0
2 1 4 5 2 1 0 18 0 1 2 0 1 0 1
1 2 2 3 0 2 0 1 31 1 2 0 1 0 1
1 1 2 2 1 1 1 0 1 31 1 0 1 1 1
1 1 1 2 0 1 0 0 0 0 20 0 1 1 0
1 1 1 2 1 1 0 0 1 1 1 24 1 1 0
1 0 0 3 1 2 1 1 1 0 1 0 19 2 0
1 1 1 2 0 2 0 1 1 1 1 1 2 16 0
1 1 1 3 1 1 0 0 0 1 1 1 1 1 18

Primary Concept: Oven
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45 1 1 0 0 0 0 0 1 2 1 3 1 3 5
2 16 1 0 0 0 1 0 1 2 0 1 1 1 2
1 2 15 1 1 0 1 2 1 2 0 0 1 2 2
2 0 2 11 0 0 1 1 1 2 0 1 1 1 2
2 1 1 1 21 1 2 2 1 2 1 0 1 1 3
2 2 1 0 2 22 2 0 1 1 2 0 1 1 2
2 1 1 1 0 1 35 1 1 2 0 0 0 1 1
3 1 3 1 2 0 2 16 1 2 1 1 1 1 3
2 2 1 0 0 0 1 0 27 2 1 0 1 1 2
1 1 2 1 1 0 2 1 1 31 1 0 0 1 3
2 1 1 1 0 0 1 1 1 1 18 0 1 2 1
2 2 0 1 0 0 1 1 2 2 0 24 1 1 1
2 1 0 0 0 0 1 0 1 2 1 1 15 2 2
2 0 1 0 1 1 1 0 1 1 0 0 0 20 2
1 1 0 1 1 0 1 1 1 2 1 0 1 2 20

Primary Concept: Bowl
43 1 0 1 0 1 3 1 0 1 2 1 0 4 2
0 16 3 2 0 2 1 0 1 1 0 1 1 4 0
0 3 16 4 1 2 0 2 1 0 1 2 1 5 1
1 1 3 16 0 1 1 1 1 0 1 1 1 4 0
1 1 2 1 17 1 1 3 0 1 1 1 2 2 1
0 2 1 2 1 17 0 1 0 1 2 2 1 3 0
0 1 2 2 0 2 37 1 1 0 0 1 1 4 0
1 0 5 5 1 1 1 15 0 0 1 1 1 5 0
0 0 2 2 1 0 1 1 24 0 3 1 2 3 1
0 1 2 0 0 1 0 1 1 31 1 1 0 5 1
1 1 1 1 0 2 1 1 0 0 13 2 0 5 0
0 1 2 1 0 2 1 1 1 0 1 25 1 4 0
0 0 2 3 0 2 1 1 1 0 1 2 24 5 0
1 1 2 2 1 2 1 0 0 0 0 2 1 33 1
0 1 2 1 0 1 1 1 0 0 0 2 1 6 16

Primary Concept: Tv
43 2 2 0 0 1 1 0 1 1 3 1 2 2 2
1 10 2 1 0 1 0 0 1 1 1 0 1 0 1
1 1 12 2 1 1 0 3 1 1 0 0 0 0 1
1 1 1 11 0 0 0 2 1 1 2 0 0 0 1
1 1 1 1 21 1 0 4 1 1 2 1 1 1 2
1 2 0 0 2 21 0 1 1 1 3 1 0 0 1
1 2 0 1 0 1 37 0 1 1 0 1 0 0 0
2 2 2 3 2 0 0 17 0 1 1 0 0 0 1
1 2 1 1 0 1 0 0 30 1 3 0 0 0 1
1 2 1 0 1 0 1 0 1 32 1 0 1 1 2
1 2 0 1 0 0 0 0 0 1 20 0 0 0 0
1 2 0 0 1 1 0 0 1 1 1 25 0 0 0
1 1 0 2 0 1 1 0 1 1 1 1 18 1 0
1 2 2 2 1 1 1 0 1 0 0 0 0 14 0
1 2 0 1 1 0 0 1 1 1 1 1 0 0 19

Primary Concept: Sink
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44 0 1 3 4 1 3 3 0 2 0 1 0 3 3
1 17 2 4 3 0 1 3 1 1 2 0 1 3 1
1 4 17 5 3 0 0 2 1 1 1 1 1 3 1
1 1 3 17 3 0 1 1 1 1 1 1 0 2 1
1 1 2 2 15 0 1 3 0 1 1 1 1 2 3
1 1 0 3 2 21 0 2 1 1 0 2 1 2 1
1 0 0 3 3 2 33 3 1 1 2 0 0 2 1
2 0 6 5 2 0 1 19 1 1 1 1 0 3 1
1 1 1 3 2 1 1 3 26 1 1 1 1 3 1
1 0 1 2 4 0 0 4 1 31 1 1 0 3 2
1 0 1 3 4 1 1 4 0 1 14 1 0 3 1
1 1 1 2 4 0 1 3 1 1 1 26 0 2 1
1 1 1 5 3 0 1 2 1 1 1 2 21 3 1
1 2 1 3 3 1 2 2 1 1 1 2 0 24 1
1 0 1 3 3 0 1 3 0 1 1 2 0 3 19
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Concept Classifier Targets

44 1 0 1 1 0 2 1 1 3 3 1 0 3 3
1 14 3 1 1 1 0 1 1 1 1 0 1 3 0
1 2 17 3 0 0 0 4 1 1 2 1 1 3 1
1 0 4 15 1 0 0 3 1 1 2 1 0 1 1
1 1 2 0 19 0 0 4 1 2 2 0 1 1 2
1 2 1 0 1 21 0 1 1 1 3 1 2 2 1
1 1 2 0 1 1 35 1 1 1 1 0 0 2 0
2 1 5 4 0 0 0 21 1 1 2 0 0 2 1
1 2 2 0 0 0 0 1 26 2 4 1 1 2 1
1 1 1 1 0 0 0 1 1 22 2 2 1 2 1
1 2 2 0 1 0 1 0 1 1 19 1 0 3 0
1 1 2 0 1 1 0 0 2 1 1 27 0 2 0
1 1 2 1 1 0 1 1 1 1 2 1 23 2 0
1 1 2 1 0 1 1 2 1 1 2 2 1 30 0
1 1 2 1 0 0 0 0 1 1 2 1 1 3 17

Primary Concept: Laptop
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44 1 2 3 2 1 3 1 1 2 4 3 3 2 3
1 17 1 3 1 1 2 0 1 2 2 1 4 2 0
1 2 16 5 1 1 1 3 1 1 2 0 3 2 0
1 0 2 18 2 1 1 2 1 1 3 1 2 1 2
1 1 0 2 19 1 1 1 0 2 3 0 4 0 2
1 2 1 2 0 22 1 1 1 1 4 0 3 2 1
1 1 0 2 2 1 38 1 1 1 2 0 2 1 1
2 1 4 6 1 1 1 19 1 1 2 1 3 2 0
1 2 1 2 1 0 2 1 30 1 4 1 3 1 2
1 1 1 2 1 0 1 1 1 32 3 1 2 2 0
1 1 0 2 2 0 2 2 1 1 21 0 2 2 0
1 1 1 2 2 1 2 1 2 1 2 27 3 2 0
1 0 0 4 2 0 2 0 1 1 3 1 21 1 1
1 1 1 3 1 0 2 0 0 1 2 0 2 29 0
1 1 1 3 1 0 2 1 1 2 3 0 2 2 13

Primary Concept: Book

Fig. 15: Independent permutation validation for COCO primary feature
models. We report the average change in AUROC (unit = 0.01) of the concept classi-
fier for the COCO primary feature models when permuting each concept independently.
We observe permutation independence: a large change in performance when classify-
ing permuted concepts, and minimal change in performance for unpermuted concepts.
Colormap: 0 50.
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42 1 0 1 1 0 2 0 0 1 2 0 3 2 1
0 18 2 0 0 1 0 0 0 1 0 0 1 1 0
0 3 15 1 0 1 0 2 0 1 0 0 1 0 1
0 1 2 17 0 1 0 1 0 0 0 0 1 0 0
1 1 1 0 19 0 1 2 0 1 0 1 1 1 1
0 0 1 0 1 15 0 0 0 1 2 1 1 0 1
0 0 1 0 0 1 30 0 0 1 0 0 1 0 0
1 1 3 1 1 1 0 15 0 1 0 0 1 1 1
0 0 1 0 0 0 1 0 25 1 2 0 1 0 1
0 1 1 0 0 1 0 0 0 24 0 2 1 1 1
0 0 0 0 0 0 0 0 0 0 13 1 1 1 0
0 0 1 0 0 1 0 0 0 1 0 23 1 0 0
0 1 1 0 0 1 1 0 0 0 0 1 24 1 0
0 2 1 0 1 1 0 0 0 1 0 1 2 18 0
0 0 1 0 0 0 0 0 0 1 0 1 1 1 17

Fig. 16: Independent permutation validation for COCO mixed feature mod-
els. We report the average change in AUROC (unit = 0.01) of the concept classifier
for the COCO mixed feature models when permuting each concept independently.
We observe permutation independence: a large change in performance when classify-
ing permuted concepts, and minimal change in performance for unpermuted concepts.
Colormap: 0 50.
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Fig. 17: Unconstrained primary feature model rankings. We compare three
randomly selected unconstrained (trained end-to-end) primary feature model rankings
generated by DEPICT to those generated by GradCAM and LIME. DEPICT identifies
the primary feature in all cases as significantly more important compared to the other
concepts.
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10 MIMIC-CXR

10.1 Experiments

Dataset. MIMIC-CXR [14, 16] consists of 242,479 frontal chest X-rays with
corresponding radiology reports. We split the data into 193706/24549/24224
images for training, validation, and test sets. To construct a final caption for each
image, we extracted demographic information corresponding to the patients’
body mass index (BMI), age, and sex at the time the chest X-ray was taken,
and prepended these information to the radiology report corresponding to the
chest X-ray. We subsampled the data for downstream tasks where we injected a
1:1 correlation between pneumonia and each primary features: bmi, age, or sex.
Diffusion Model. A diffusion model initialized on Stable Diffusion [30] with
the text encoder replaced with publicly available clinical BERT embeddings [3]
was fine tuned on chest X-ray/radiology report pairs for 295569 iterations on
a batch size of 16 at a 256x256 resolution with a learning rate of 1.0e-4. We
fine-tuned only the U-Net and text-encoder of the model.
Target Models. We trained target classifiers to predict the presence of pneu-
monia. We trained the classifier on top of the concept classifier. During training,
images were reshaped such that their smaller axis was 256 pixels, and then ran-
domly cropped along their longer axis to 256x256. Images were also randomly
rotated up to 15 degrees. We used ImageNet normalization across all experi-
ments.
Concept Classifier. We fine-tuned a DenseNet-121 [11] pretrained on Ima-
geNet [9] to learn the presence of radiological findings and the three permutable
concepts: bmi, age, sex, enlarged cardiomediastinum, cardiomegaly, lung opacity,
lung lesion, edema, consolidation, atelectasis, pneumothorax, pleural effusion,
pleural other, fracture, and support devices. The model was trained for three
epochs using stochastic gradient descent with momentum minimizing binary
cross-entropy loss with a learning rate of 1.0e-4, momentum of 0.8 and a batch
size of 32. During training, images were reshaped such that their smaller axis
was 256 pixels, and then randomly cropped along their longer axis to 256x256.
Images were also randomly rotated up to 15 degrees. We used ImageNet nor-
malization across all experiments.
Validation of assumptions. For effective generation, we measure the difference
in target model performance between real and generated images. If the target
model performs well on generated images, then we can measure concept classifier
performance on specific concepts in the images that we wish to permute. For
concepts that we are not permuting, we might not need to validate effective
generation depending on the scenario: (1) Target model does not pass the checks
of effective generation. Consider a concept that we are not permuting in text
space (e.g., Pleural effusion on the chest X-ray). If the target model performance
drops on the generated images, then we might want to investigate why. In this
setting, it would be useful to look at granular changes in model performance via
the concept classifier to know if specific concepts are not being generated well,
and thus contributing to poor target model performance. In any case, since the
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target model does not pass the checks of effective generation, we would not apply
DEPICT since the target model does not pass the checks of effective generation.
(2) Target model does pass the checks of effective generation. Again, consider
a concept that we are not permuting in text space (e.g., Pleural effusion on
the chest X-ray). If the target model passes the checks of effective generation,
but the concept classifier performs poorly in detecting a specific concept that
we are not permuting, we can still apply DEPICT. This is because we know
the model must not be relying on the non-permutable concept, since the target
model can still classify the generated images well. Furthermore, we do not need
to generate a reference performance for the non-permutable concept since we are
not permuting it, nor ranking it against other concepts.

Independent permutation. We note that it is still useful to measure indepen-
dent permutation on non-permutable concepts. This way, we can check to make
sure that when permuting a concept (such as age, bmi, or sex), any resulting
change in target model performance is not confounded by other changes on the
image.
Results. Here, we further discuss results of DEPICT on MIMIC-CXR.
Validation of assumptions. All three target models are able to accurately classify
the generated images (Table 8). Similarly, the concept classifier performs well on
both real and generated images for all three demographic concepts: bmi, age, and
sex (Table 9). We also measured concept classifier performance on radiological
findings, finding that the concept classifier performs well across most concepts
in the images (Table 9), but struggles on a few such as detecting lung lesions
(AUROC drop = 0.31) and pneumothorax (AUROC drop = 0.23). Again, we
note that we can still apply DEPICT to these settings, as we are not permuting
such concepts on the images and the target models still classify the generated
images well, even without being able to detect concepts such as lung lesions and
pneumothorax (target model AUROC > 0.85).

In terms of independent permutation, when permuting age, bmi, and sex, we
observe some changes in concept classifier performance when detecting concepts
such as lung opacity and lung lesion (Fig. 18). Thus, one must proceed with
caution when interpreting the results of DEPICT. When permuting one of the
three concepts, we can conclude that the model relies on each of the three primary
features in some way - either directly, or by correlation with other concepts such
as lung opacity and lung lesion.

Table 8: Effective generation validation for MIMIC models. We show AUROC
on both real and generated images for the MIMIC models. The differences in classifi-
cation AUROC between real and generated images range from 0.0 to 0.04 AUROC.

Primary Feature
BMI Age Sex

Real Images 0.89 0.98 1.0
Generated Images 0.85 0.96 1.0
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Table 9: Effective generation validation for MIMIC concept classifiers. We
show AUROC on real and generated images for concept classifiers on MIMIC across
all concept classifier targets.

Primary Feature
BMI Age Sex

Concept Classifier Target Real Gen Real Gen Real Gen

BMI 0.94 0.91 0.95 0.91 0.95 0.90
Age 0.98 0.95 0.98 0.97 0.98 0.96
Sex 1.00 1.00 1.00 1.00 1.00 1.00
Enlarged Cardiomediastinum 0.85 0.84 0.86 0.74 0.84 0.72
Cardiomegaly 0.91 0.85 0.92 0.86 0.91 0.82
Lung Opacity 0.70 0.66 0.79 0.71 0.69 0.60
Lung Lesion 0.88 0.68 0.92 0.78 0.95 0.64
Edema 0.95 0.82 0.95 0.84 0.93 0.83
Consolidation 0.91 0.81 0.91 0.83 0.91 0.85
Atelectasis 0.70 0.57 0.81 0.58 0.81 0.57
Pneumothorax 0.96 0.79 0.97 0.89 0.96 0.87
Fracture 0.88 0.68 0.85 0.69 0.87 0.72
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BMI Age Sex Enlarged
Cardiomediastinum
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Lung
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BMI

Age

SexPe
rm

ut
ed

 C
on

ce
pt 37 1 0 3 1 5 2 1 4 6 4 3 0
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Fig. 18: Independent permutation validation for MIMIC-CXR. We report
the average change in AUROC (unit = 0.01) of the concept classifier for the MIMIC
concepts when permuting each one independently. When permuting bmi, age, and sex,
we observe changes to the concept classifier’s ability to detect other radiological findings
such as lung opacity and lung lesion. Thus, the importance of these three demographic
concepts could be due, in part, to changes in the presence of other findings on the chest
X-ray. Colormap: 0 50.
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